1,376 research outputs found

    Estimating the contribution of assembly activity to cortical dynamics from spike and population measures

    Get PDF
    The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data

    In Situ Measurements of Interstellar Dust

    Get PDF
    We present the mass distribution of interstellar grains measured in situ by the Galileo and Ulysses spaceprobes as cumulative flux. The derived in situ mass distribution per logarithmic size interval is compared to the distribution determined by fitting extinction measurements. Large grains measured in situ contribute significantly to the overall mass of dust in the local interstellar cloud. The problem of a dust-to-gas mass ratio that contradicts cosmic abundances is discussed.Comment: 4 pages and two figure

    EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential

    No full text
    Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs

    On a phase-field model for electrowetting and other electrokinetic phenomena

    Full text link
    In three space dimensions, we present existence results for weak solutions to a novel two-phase model for various electrokinetic phenomena, including in particular dynamic electrowetting with electrolytes. The model is thermodynamically consistent. It combines Navier-Stokes- and Cahn-Hilliard-type phase-field equations with Nernst-Planck equations for ion density-evolution and with an elliptic transmission problem for the electrostatic potential. As physical energy estimates guarantee only boundedness of ion densities in the Llog L-Orlicz class uniformly with respect to time, an iteration method is proposed to establish higher regularity and integrability results of these quantities. In an appendix, the derivation of the model is sketchedThis work was supported by DAAD, Ministerio de Educación y Ciencia through the program Acciones Integradas Hispano Alemanas, project D/06/12788, and by Dr. Hertha und Helmut Schmauser-Stiftung

    One year of Galileo dust data from the Jovian system: 1996

    Get PDF
    The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileo's interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded 100min−1\rm 100 min^{-1}. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10 figure

    Binaural Interaction in the Nucleus Laminaris of the Barn Owl : A Quantitative Model

    No full text
    A quantitative, neuronal model is proposed for the computation of interaural time difference (ITD) in the auditory system of the barn owl. The model uses a general, probabilistic approach, and is composed of two stages, the characteristics of which are based on anatomical and physiological evidence. Excitatory inputs from both ears, phase-locked to the waveform of tonal stimuli, together with phase-independent inhibitory inputs are summated linearly. The result is transformed into a probability of spike generation by a sigmoid nonlinearity, constituting a stochastic, ’soft’ threshold with saturation. The model incorporates inhibition as a control parameter on the nonlinearity, and includes the usual crosscorrelation-type models as a special case. It has a minimum number of parameters, the values of which can be estimated from physiological data in a straightforward manner. This simple, general model accounts for the binaural response properties of physiologically recorded neurons. In particular, it explains the experimentally observed ITD-tuning and the increase of phase-locking from input to output neurons. The model predicts that a decrease in inhibition causes a non-monotonic change in sensitivity to ITD
    • …
    corecore